News | Magnetic Resonance Imaging (MRI) | December 27, 2021

A recent study demonstrates that magnetic resonance imaging (MRI) and artificial intelligence (AI) can be used to detect early signs of tumor cell death in response to a novel virus-based cancer therapy

Figure courtesy of Nature Biomedical Engineering

December 27, 2021 — In a recent study published in Nature Biomedical Engineering, a team led by researchers at Massachusetts General Hospital (MGH) has demonstrated ​​that magnetic resonance imaging (MRI) and artificial intelligence (AI) can be used to detect early signs of tumor cell death in response to a novel virus-based cancer therapy.

Recently, a promising therapeutic virus that selectively kills cancer cells while sparing normal tissue has sparked hope for treating aggressive brain tumors. To further optimize the virus-based therapy, frequent non-invasive monitoring of the treatment response must be performed. This monitoring is crucial for understanding the interactions between the virus and cancer cells, such as the extent of virus spread within the tumor and therapeutic response.

The researchers used quantitative molecular MRI images to measure multiple tissue properties, including tissue pH and protein concentration, that are altered with cell-death. This method allows therapeutic response monitoring much earlier than with previous techniques. The treatment responses were visible just 48 hours after viral-therapy, long before any changes in tumor volume were observed.

“We programmed an MRI scanner to create unique signal “fingerprints” for different molecular compounds and cellular pH. A deep learning neural network was then used to decode the fingerprints and generate quantitative pH and molecular maps,” said Christian Farrar, PhD, an investigator and faculty at the Athinoula A. Martinos Center for Biomedical Imaging. “The MRI molecular fingerprinting method was validated in a mouse brain tumor study where the tumors were treated with a novel virus-based therapy that selectively killed cancer cells.”

To maximize the efficiency of this treatment approach, the researchers developed a method for the detection of tumor cell death caused by the virus. This has allowed for the early and rapid detection of treatment-responsive tumor regions. Recently, the researchers have implemented this method to quantify cellular pH and molecular compounds in the healthy human brain. Future investigation of this approach in human brain tumor patients would help to optimize these virus-based therapies

“This study demonstrates the strength and promise of implementing computerized AI-based technology in medicine for the noninvasive investigation of biological processes that underlie disease,” said Or Perlman, PhD, a research fellow at the Athinoula A. Martinos Center for Biomedical Imaging. “One of the most interesting and key components for the success of this approach was the use of simulated molecular fingerprints to train the machine learning neural network. This concept could potentially be expanded and investigated for solving other medical and scientific challenges.”

This study describes a new method for detecting tumor cell death non-invasively using MRI. The capacity to do this could be useful for non-invasive monitoring of cancer treatment, potentially improving patient care and tailoring the treatment to an individual patient. The same approach might also be beneficial for detecting and characterizing other medical conditions where elevated cell death occurs, such as stroke and liver disease.  While the study was mainly validated using a mouse brain tumor model, the researchers have demonstrated the ability to use the same method for producing quantitative pH and molecular maps in rat stroke models and healthy humans. In the future, they plan to further explore the applicability of this non-invasive imaging approach in patients with brain tumors and stroke.

For more information: www.massgeneral.org

 


Related Content

News | Radiology Education

Jan. 20, 2026 — The American Society of Radiologic Technicians (ASRT) Foundation has named ASRT member Danielle McDonagh ...

Time January 20, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Mammography

Jan. 16, 2026 — Vega Imaging Informatics has announced the successful curation of the world’s largest digital breast ...

Time January 19, 2026
arrow
News | Radiation Therapy

Jan. 16, 2026 — Elekta has announced that its Elekta Evo* CT-Linac has received 510(k) clearance from the U.S. Food and ...

Time January 16, 2026
arrow
News | Radiology Business

Jan. 7, 2026 — RadNet, Inc., a provider of high-quality, cost-effective outpatient diagnostic imaging services and ...

Time January 13, 2026
arrow
News | X-Ray

Dec. 31, 2025 – Carestream Health, Inc. has completed the separation of the company into two geographically focused ...

Time January 08, 2026
arrow
News | Radiology Business

Jan. 6, 2026 — DirectMed Imaging, a portfolio company of Frazier Healthcare Partners, has acquired Tri-Imaging Solutions ...

Time January 06, 2026
arrow
News | Stroke

Dec. 18, 2025 — Brainomix, a provider of AI-powered imaging biomarkers for stroke and lung fibrosis, has announced ...

Time December 24, 2025
arrow
News | Information Technology

Dec. 16, 2025 — McCrae Tech has launched the world’s first health AI orchestrator called Orchestral. It is a health ...

Time December 23, 2025
arrow
News | RSNA 2025

Dec. 12, 2025 — At RSNA 2025, United Imaging Intelligence (UII), the AI-focused subsidiary of United Imaging Group ...

Time December 17, 2025
arrow
Subscribe Now